Definitions of Compactness and The Axiom of Choice

نویسندگان

  • Omar De la Cruz
  • Eric J. Hall
  • Paul E. Howard
  • Jean E. Rubin
  • Adrienne Stanley
چکیده

We study the relationships between definitions of compactness in topological spaces and the roll the axiom of choice plays in these relationships.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On characterizations of the fully rational fuzzy choice functions

In the present paper, we introduce the fuzzy Nehring axiom, fuzzy Sen axiom and weaker form of the weak fuzzycongruence axiom. We establish interrelations between these axioms and their relation with fuzzy Chernoff axiom. Weexpress full rationality of a fuzzy choice function using these axioms along with the fuzzy Chernoff axiom.

متن کامل

Products of compact spaces and the axiom of choice II

This is a continuation of [dhhkr]. We study the Tychonoff Compactness Theorem for various definitions of compact and for various types of spaces, (first and second countable spaces, Hausdorff spaces, and subspaces of R). We also study well ordered Tychonoff products and the effect that the multiple choice axiom has on such products.

متن کامل

Products of Compact Spaces and the Axiom of Choice

We study the Tychonoff Compactness Theorem for several different definitions of a compact space.

متن کامل

Determinacy from Strong Compactness of Ω1

In the absence of the Axiom of Choice, the “small” cardinal ω1 can exhibit properties more usually associated with large cardinals, such as strong compactness and supercompactness. For a local version of strong compactness, we say that ω1 is Xstrongly compact (where X is any set) if there is a fine, countably complete measure on ℘ω1(X). Working in ZF + DC, we prove that the ℘(ω1)-strong compact...

متن کامل

Searchable Sets , Dubuc - Penon Compactness

We show that a number of contenders for an abstract and general notion of compactness, applicable in particular to computability theory and constructive mathematics, coincide in some well known frameworks. We consider compactness of sets rather than of spaces, where we replace topologies by the restriction to constructive reasoning, as in the work by a number of authors, including Penon, Dubuc,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Symb. Log.

دوره 67  شماره 

صفحات  -

تاریخ انتشار 2002